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ABSTRACT

The so-called Deslongchamps annulation of deprotonated γ,δ-unsaturated β-ketoesters 15 to 2-(alkoxycarbonyl)cyclohex-2-en-1-ones or
similarly activated cyclohex-2-en-1-ones offers a versatile access to various kinds of decalindiones. The scope of Deslongchamps
annulations was extended by establishing acceptor-substituted benzoquinone monoketals such as 13 as viable substrates. They gave
octalindiones such as 35 with diastereoselectivities g 95:5.

Decalins are a structural motif from a large number of
natural products.1 The most famous decalins are the
steroid hormones.2 Tetracycline antibiotics3 are cis-octa-
lins, and there is a strong demand for new variants.4

Mevastatin, or compactin, is a hexalin, which lowered
cholesterol production in man in an unprecedented way.5

Its pharmacophore initiated the development of the statin
family6 of blockbuster drugs in the pharmaceutical indus-
try. Azadirachtin is a crop-protecting cis-decalin with a

THF bridge; it was an exceptionally tough synthetic
target.7

Reflecting this significance, decalin syntheses abound.8,9

Preferred approaches are by Diels�Alder reactions10 or
Robinson annulations.11 The Hajos�Parrish�Wiechert�
Eder�Sauer variant12 provides enantiomerically pure oc-
talindiones that include theWieland�Miescher ketone,13 a
key intermediate en route to synthetic steroids. Tandem
cyclizations are particularly suited formaking decalins and
cyclohex-annulatedor (oligocyclohex)-annulateddecalins.
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Originally cationic approaches predominated,14 but now
radical-induced15 or radical-cation-induced16 (poly)cyc-
lizations exist as well.

Deslongchamps and Lavall�ee contributed a decalin
synthesis,17 referred to as the “Deslongchamps annula-
tion”. It fuses the cesium enolate of a “Nazarov reagent” 2
(i.e., a γ,δ-unsaturated β-ketoester18) to an ester- or a
similarly substituted cyclohexenone 1 (Scheme1).19�34 Such
annulations35 give decalindiones with cis-fused rings at
both the initial (3) and the de(alkoxycarbonylated) stage
(4). A variety of structural changes in the cyclohexenone
(Scheme 2) and in the Nazarov reagent are tolerated
(Scheme 3); cesium enolates of the γ,δ-unsaturated

β-ketosulfoxides 1932,34 and of the analogous β-ketosul-
fone 2032 react like Nazarov reagents (Scheme 3).

Deslongchamps products 3 and 4 contain four and three
functional groups, respectively. These functional groups
increase in numberwhen cyclohexa-2,5-dien-1-ones 1020,32

or 1120,33 rather than cyclohex-2-en-1-ones (5-9) are in-
corporated. We describe the first Deslongchamps annula-
tions of benzoquinone monoketals, namely compounds
12�14. They deliver the most densely functionalized Des-
longchamps products to date.

Benzoquinone monoketal 12 was obtained like its ana-
logue containing C(OEt)2

36 instead of C(OMe)2, by oxidiz-
ing a solution of ester 2137 in methanol with PhI(OAc)2

38

(Scheme 4). Quinone spiroketal 13 resulted from the
commercially available acid 22 after a regioselective ether-
ification with chloroethanol and esterification with H2SO4

and methanol. The resulting ester 2439 decomposed when
exposed toPhI(OAc)2 but gave93% 13whenoxidizedwith
PhI(O2CCF3)2.

40 While ester-substituted benzoquinone

Scheme 1. Deslongchamps Annulation of Nazarov Reagents 2
to Electron-Deficient Cyclohexenones 1a

aUsually a defunctionalization of 3f4 follows.

Scheme 2. Scope of Deslongchamps Annulations with Respect
to Cyclohexenones or Cyclohexadienones

Scheme 3. Scope of Deslongchamps Annulations with Respect
to the Nazarov or Related Reagent (18b: This Work)
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monoketals were described earlier,36,41 the ketone-substi-
tuted monoketal 14 is the first of its kind. It was prepared
from phenol 2542 via isobutyrate 26. A photo-Fries rear-
rangement (λ = 254 nm) provided ketone 27, which was
oxidized with PhI(O2CF3)2.

40

Nazarov reagents 15a17,20,32 and 15d43 and analogs 15b
and 15c were synthesized trans-selectively by Horner�
Wadsworth�Emmons reactions of an appropriate aldehyde
with the dianionof phosphonoketoester 2932 (Scheme5).We
found it advantageous to access 29 by fragmenting the
phosphonodioxinone 2844 in tert-butanol/toluene at
reflux (i.e., differently than described27).45 Nazarov reagents
18a46 and 18b emerged from aldol addition/oxidation47

sequences engaging γ-butyrolactone (30a) and δ-valero-
lactone (30b), respectively, with crotonaldehyde.

A suspension of benzoquinone monoketal 12, Nazarov
reagent 15a, and Cs2CO3 in CH2Cl2 underwent aDeslong-
champs annulation at room temp within 21 h (Scheme 6).
It afforded 68% of the octalindione 32 as a single
stereoisomer.48 Benzoquinone monoketal 13 and the same
Nazarov reagent required 3 h to form 89% of the octal-
indione 34a with the same amount of diastereocon-
trol.48,49 The increases in reactivity and yield suggest that

the dioxolane ring exerts less steric hindrance in 13 than the
C(OMe)2moiety in 12. Another beneficial dioxolane effect
was that octalindione 34a, in contrast to 32, was cleanly de-
tert-butylated at 0 �C by CF3CO2H (25% solution in
CH2Cl2). Decarboxylation of the resulting β-ketoacid in
refluxing toluene provided octalindione 35a in 64% yield.

Scheme 4. Synthesis of Benzoquinone Monoketals 12�14

Scheme 6. Deslongchamps Annulations I to Benzoquinone
Monoketals Plus Subsequent De(tert-butoxy)carbonylations

Scheme 5. Synthesis of Nazarov Reagents 15a�15d and
18a�18ba

aKeto/enol ratios in CDCl3 solution (400 MHz, 1H NMR spectra):
for 15a, 60:40; for 15b, 73:27; for 15c, 69:31; for 15d, 57:43; for, 18a
17:83; for 18b, 6:94.
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ItsX-ray analysis50 proved the cis-fusionof the rings and the
cis-orientation of the substituents at C-4a and C-5. Both
features are typical for Deslongchamps annulations.19�34

The ester-substituted benzoquinone monoketal 13 ac-
cepted the somewhat bulkier Nazarov reagents 15b�d
almost as readily as 15a and again with excellent diastereo-
selectivities (ds g 95:5;48 Scheme 7). Subsequent defunc-
tionalizations by trifluoroacetolysis/thermolysis were fea-
sible, too. They delivered the octalindiones 35b�d as single
diastereomers. The relative configuration of the stereocen-
ters of 35b�d should be the same as that in the parent
compound 35a.51 The ketone-substituted benzoquinone
monoketal 14 and theNazarov reagent 15awere processed
similarly. This led to the ketone-substituted octalindione
37 selectively.48 It, too, should be configured like analogue
35a.51

A while ago we established that lactone-containing
Nazarov reagents undergo Deslongchamps annulations
with type-5 cyclohexenones.28,46 We have found since that
they also annulate to the benzoquinone monoketal 13
(Scheme 8). Nazarov reagent 18a delivered 90% diaster-
eomerically pure spiro-γ-lactone 38a, andNazarov reagent
18b, 74% diastereomerically pure spiro-δ-lactone 38b.48

Both products were elucidated configurationally by X-ray
crystallography.50 It is noteworthy that the cis-orientation
of theirC-5;MeandC-8;CdObondswould followwith
necessity from the intermediacy of a cesium-chelating

enolate, which would be (Z)-configured, if these annula-
tions were 1-step reactions.35

In summary we synthesized a number of acceptor-sub-
stituted benzoquinone monoketals (12�14). We found
that they undergo Deslongchamps annulations with stan-
dard Nazarov reagents (15a�d) or their lactone-contain-
ing variants (18a,b). These annulations proceeded with a
high degree of both simple and induced diasteroselectivity.
The initially obtained octalindiones (32, 34a�d, 36) or
their readily prepared de(tert-butoxy)carbonylation pro-
ducts (35a�d, 37) exhibit five to six functional groups. The
lactone-based Nazarov reagents 18a,b furnished the tri-
cyclic annulation products 38a,b, respectively. They
feature six functional groups and a spirolactone moi-
ety. Since diterpenoids with a spirolactone-substituted
decalin scaffold are widespread52 and their syntheses
are an area of current activity,53 accessing such com-
pounds by the strategy shown in Scheme 8 is an inter-
esting perspective.
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Scheme 7. Deslongchamps Annulations II to Benzoquinone
Monoketals Plus Subsequent De(tert-butoxy)carbonylations

Scheme 8. Deslongchamps Annulations III to Benzoquinone
Monoketals

(51) This conclusion is not only based on a plausible analogy but also
on circumstantial 1H NMR evidence. In CDCl3 solutions 8a-H is
significantly deshielded (35a: δ = 3.40 ppm; 35b: δ = 3.43 ppm; 35c:
δ=3.39 ppm; 35d: δ=4.05�4.10 ppm (includes deshielding effect ofR-
phenyl group); 37: δ=3.22 ppm) compared to 5-H (35a: δ=2.79 ppm;
35b: δ = 2.68 ppm; 35c: δ = 2.58 ppm; 35d: δ = 3.48 ppm (includes
deshielding effect of R-phenyl group); 37: δ = 2.56�2.68 ppm). This
indicates that 8a-H is cis-oriented and 4-H trans-oriented relative to the
ester substituent at C-4a.
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